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Background: Timing Evaluation in Design Flow 

• Existing timing evaluation methods

• 1. Traditional: STA

• 2. ML-based: early-stage prediction

• Timing in the design flow

• Performance – sign-off criterion

• Turnaround optimization for 

timing closure
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Prior Works: ML for Early-Stage Timing Evaluation

•  Netlist & Layout Stage

• Existing explorations most target these stages ([DAC’221, DAC’232, etc.])

• Predict later-stage register slack with timing-related physical features

• Customize ML models based on STA mechanism

• Only available after logic synthesis

• RTL Stage

• More challenging (vs. netlist & layout): no physical information in RTL code!

1Guo et al. A timing engine inspired graph neural network model for pre-routing slack prediction. In DAC’22.
2Wang et al. Restructure-Tolerant Timing Prediction via Multimodal Fusion. In DAC’23. 3



Prior Works: ML for Early-Stage Timing Evaluation

• RTL Stage

• Only coarse-grained overall WNS/TNS or combinational delay

• No prior work evaluates fine-grained timing slack at the RTL stage

• No prior work applies early timing optimization at the RTL stage
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Motivation: RTL-Stage Timing Slack Evaluation

• Can we evaluate fine-grained timing slack earlier at the RTL stage?

• RTL describes functional behaviors with HDL code

• Annotate slack directly on HDL

• Earlier stage with higher optimization flexibility for designers/EDA tools vs. post-syn
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Challenges in RTL-Stage Prediction 

•  Design RTL is originally in HDL code format

• Cannot be directly processed by either ML or traditional STA tools

•  No direct mapping between most RTL signals and post-syn cells/nets

• Cannot annotate delay labels

(a) RTL (b) Netlist

Need

mapping
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Our Solution: RTL-Timer in Design Flow

• RTL-stage fine-grained timing 

slack evaluation

• Arrival time value prediction

• Arrival time critical ranking

• Enable predictive optimizations

• Annotate slack on HDL → RTL designer

• Opt in commercial logic synthesis tool
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Existing RTL Representations

•  Logic transformation

• Logic synthesis & verification

• Binary Decision Diagrams (BDD)

• Conjunctive Normal Form (CNF)

• And-Inverter Graphs (AIGER)

• Btor2

• Not optimized for ML-based solutions

• Without the correlation between RTL 

and netlist

•  ML-based modeling

• Design quality prediction

• Abstract syntax tree (AST) ([SNS])

• Simple operator graph (SOG) ([MasterRTL])

• And-Inverter Graphs (AIGER) 

• Ad-hoc solutions 

• Without systematically exploring better 

candidates
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Universal ML-friendly RTL Representation

•  Proposed representation: Boolean Operator Graph (BOG)

• Universal bit-level RTL representation

• Specialized into different variants (SOG, AIG, XAG, etc.) → multi-view for each design
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Boolean Operator Graph

•  One-to-one mapping of registers

• Sequential RTL signal bits ⬄ bit-wise netlist registers

• Annotate slack label on each bit-wise RTL register for fine-grained ML training

•  Treat BOG as a pseudo netlist – We can directly perform STA on it! 

• Registers and operators: standard cells from the liberty file
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Workflow of RTL-Timer
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1. Register-Oriented RTL Processing Workflow

•  Inspired by STA propagation

• Endpoint accumulates arrival time 𝑨𝑻 from all its driving registers (cone)

•  Capture timing-related information from register cone

• STA on BOG → slowest path 𝑺∗→𝒊
𝑪  (not real critical path)

• K random sampled paths 𝑳∗→𝒊
𝑪(𝒌)

• Customized max 𝑨𝑻 loss

• 𝑨𝑻𝒊
𝒑𝒓𝒆𝒅

= 𝒎𝒂𝒙(𝑭𝑨𝑻 𝑺∗→𝒊
𝑪 , {𝑭𝑨𝑻 𝑳∗→𝒊

𝑪(𝒌)
})
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2. ML Modeling in RTL-Timer

•  Feature exploration

• Design-level

• Global features

• Compare endpoints across designs

• Cone-level

• Size of the cone

• Path-level

• Physical-related features on timing paths
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2. ML Modeling in RTL-Timer

• Capture max slack on each register endpoint

• Customized loss function

• Ensemble learning with four BOG variants

• Multi-view for each design 

• Timing evaluation

• Bit-wise endpoint slack

• Signal-wise endpoint

• Signal max slack

• Signal critical ranking

• Design overall WNS/TNS
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3. Optimization Enabled by RTL-Timer

• Enhancing logic synthesis process

• Constraints for commercial tools

• Path grouping: group all endpoints based on ranking

• Register retiming: only top-10% critical endpoints

•  Automatic slack annotation on HDL 

• Benefit RTL designers

• Find and optimize timing-critical components
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Experiment Setup

•  Dataset

• 21 open-source RTL designs

•  Label collection

• Synopsys Design Compiler / Prime Time + NanGate 45nm PDK

• Slack on each endpoint register

•  Evaluation metrics

•  Regression

• Correlation/Determination coefficient (R/R2)

• Mean absolute percentage error (MAPE)

• Ranking

• Critical level ranking coverage (COVR)
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Modeling Performance

•  Fine-grained modeling (slack)

• Accurate prediction on each reg bit/signal bus

• Regression: XGBoost w. cus. loss performs best (R=0.89)

• Ranking: L2R outperforms all regression models (COVR=80%)

•  Design overall timing modeling (WNS/TNS)

• Calibration based on fine-grained modeling 

• RTL-Timer outperforms all baselines
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Modeling Performance

•  BOG variants ensemble learning

• Each variant contributes to the prediction

• Robustness across benchmarks and tasks

•  Visualization of prediction

• RTL-STA is not accurate enough

• Bit-wise calibrates RTL-STA 

• Signal-wise calibrates bit-wise 

18



Optimization Performance

•  Guiding commercial synthesis tool

• Improve WNS(3.1%)/ TNS(9%) for most designs

• Maintain or even decrease area/power 

• Reduce time-consuming iterations:         

Concurrently run default and opt flows

•  Impact after placement

• Still remains significant after place (w. place opt)

• WNS(3.1%)/ TNS(6.8%)
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Optimization Performance

•  Optimization impact on slack distribution

• Path grouping: single high peak → two lower peaks (better TNS) 

• Register retiming: improved WNS

TheoreticalExperimental
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Runtime Analysis

•  Prediction

• 4% of default logic synthesis runtime

• Two key parts:

• RTL processing

• HDL to BOG (parallel): 3.2%

• Register-oriented processing: 0.8%

• Model inference: <0.1s

•  Optimization

• Logic synthesis w/ optimization

• Runtime extends by an average of 

45% vs. default synthesis flow

21



Conclusion

•  RTL-Timer: estimate slack on each register at the RTL stage

• Ensemble four ML-friendly RTL representations

• Capture max slack with register-oriented RTL processing and customized ML model

•  Enable early timing optimization

• Annotate slack on HDL code for RTL designers

• Predictive timing optimization for logic synthesis process

Available at: https://github.com/hkust-zhiyao/RTL-Timer
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