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Background



Background: Al for EDA

* Remarkable achievements
* Design quality evaluation

* Power, timing, area, routability, etc.

Functional reasoning
* Arithmetic word-level abstraction, SAT, etc.

Optimization
* Design space exploration, etc.

* Generation
e RTL code, verification, etc.
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Background: Al for EDA

* Most existing predictive solutions are task-specific
e Supervised learning
* Tedious and time-consuming
* Hard to generalize to other tasks

Single-Stage Label Feature ML Model ML Model ( Slngle /
Circuit Data Collectlon Extraction Design Training EDA Task
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Background: Foundation Models

e Al foundation models
paradigm

* Pre-training on large amounts of unlabeled data ( )
* Fine-tuning based on task-specific labels ( )
* Applications
* Natural language processing: GPT, BERT, Llama, etc.
* Computer vision: DALLE, stable-diffusion

ChatGPT LLaMA DALL. E 3 ‘J Stable Diffusion

by OO Meta
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CircuitEncoder Framework




Motivation: Towards Circuit Foundation Models

* Large circuit model
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Motivation: Towards Circuit Foundation Model

* Our targeted circuit foundation model
* Capture unique circuit intrinsic property

* Cross-stage: RTL (functional) = netlist (Physical)

* Equivalent transformation: semantic & structure

e Support various types of tasks

* Functionality: reasoning, verification, etc.
* Design quality: performance, power, area, etc.
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Key Idea: First RTL-Netlist Cross-Stage Alignment

* General circuit foundation model solution
* Two-phase paradigm
» Self-supervised pre-trainining
» Supervised fine-funing

Phase 1: Pre-Train Phase 2: Appllcatlon fQJ
N Circuit Fine-Tune N ™
- Embeddings | Varlous EDA Tasks ~
Multi-Stage Self ~~' Quality  Function
Unlabeled L | "-\\7 v’ Timing | (v Reg Type \ A
Circuit Data | Supervise Y (| v Area V.. J
Cross-Stage Circuit Lightweight . . 7
Align Foundation Model ML Model — N\ S
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Comparison with Existing Solution

* Circuit representation learning

* Goal: to learn a general circuit embedding for various tasks

* Explorations

Supervised: HOGA, Gamora, etc.
* Pre-trained: DeepGate Family, FGNN, SNS v2, etc.

Table 1: Existing two-phase circuit representation learning techniques for ASIC design.

Downstream Tasks Pre-Training Design Stage Support Open-Source
Method Multi- Design Function Self- Train Cross- Target Seq. Circuit Model
Type Quality Supervised Task Stage  Stage 1
Design2Vec [25] v’ Cover Point RTL v’
SNS v2 [36] v’ v’ Contrastive RTL v’
FGNN [28] v’ v’ Contrastive Netlist
DeepGate [17] v’ Probability Netlist
DeepGate2 [23] v’ Truth Table Netlist v’
DeepSeq [16] VOx Probability Netlist v’
CircuitEncoder Multi-Stage RTL ASIA SOUTH PAGIFIC
(Ours) v v v v Contra.stife v Netlist v v
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Comparison with Existing Solution

* Circuit representation learning
 Limitations: still do not provide perfectly general circuit

representation

* Mainly support one type of task (phys. PPA or func.)

Only target single stage (RTL or netlist)

Table 1: Existing two-phase circuit representation learning techniques for ASIC design.

Downstream Tasks Pre-Training Design Stage Support Open-Source
Method Multi- Design Function Self- Train Cross- Target Se I(ijircuit P Model
Type Quality Supervised Task Stage  Stage 9
Design2Vec [25] v’ Cover Point RTL v
SNS v2 [36] v’ v’ Contrastive RTL v
FGNN [28] v’ v’ Contrastive Netlist
DeepGate [17] v’ Probability Netlist
DeepGate2 [23] v’ Truth Table Netlist v’
DeepSeq [16] Vald Probability Netlist v’
CircuitEncoder NV v v v Multi-Stage RTL v v
(Ours) Contrastive Netlist
12 * DeepSeq predicts netlist gate toggle rate at the node level to estimate power consumption, rather than directly modeling power.
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Comparison with Existing Solution

* Our CircuitEncoder
* Self-supervised pre-trained: circuit graph function contrastive
* Cross-stage aligned: RTL (func.)—netlist (phys.) alignment
e Support various design tasks: PPA + functionality

Table 1: Existing two-phase circuit representation learning techniques for ASIC design.

Downstream Tasks Pre-Training Design Stage Support Open-Source
Method Multi- Design Function Self- Train Cross- Target Seq. Circuit Model
Type Quality Supervised Task Stage  Stage ’
Design2Vec [25] v Cover Point RTL v’
SNS v2 [36] v’ v’ Contrastive RTL v’
FGNN [28] v’ v’ Contrastive Netlist
DeepGate [17] v’ Probability Netlist
DeepGate2 [23] v’ Truth Table Netlist v’
DeepSeq [16] Vakd Probability Netlist v’
CircuitEncoder Multi-Stage RTL
(Ours) v v v v Cuntrastife v Netlist v v
ASIA SOUTH PAchlc
* DeepSeq predicts netlist gate toggle rate at the node level to estimate power consumption, rather than directly modeling power.
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Preprocessing: Circuit Design Stages
* Netlist

* RTL

14

* Earlier design stage
* Higher abstraction level
* More semantic content

* Task

* Predicting later netlist PPA

HDL Code ™\
reg [1:0] RO,RL;
reg [2:0] R2;
wire [2:0] W1,W2;
assign W1 = RO + R1;

always @ (posedge eclk)

R2 <= W2;

Later design stage

Lower abstraction level

More implementation details

Task

* Reasoning earlier RTL function

DFF1

NAND |
|

7J

DFF4

Netlist "\

DFF2 | DFF3
' 1
AND , AOI
*/_;
INV |

MUX *'*1

|DFF5 DFF6
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Preprocessing: Circuit Data Alighment
* Circuit-to-graph transformation

. [ | Register / DFF > RTL Operator [ Netlist Logic GaieJ

——— e g — —

HDL Code Netlist | RO R1 e LRO| | R lRo[1) RoJo)| R1[1]_ R o]| |
! // \ — . -
| |reg 1:0] RO,R1; _DFF1 |DFF2| |DFF3]|: T * M \ Aol i \, RO |T R
! |reg [2:0] R2; : €23 | I CADD ) XOR/ FA | | / T
Ilwire [2:0] W1,W2; NAND AND PR | R2 | | LADD ) T ! /
e A | Voo CNOT > L
| |assign W1 = RO + R1; INV ||! R3 m Y j’_ AND ! R3
- FA T mux | A \ MUX mMux | a
: always_@ (p?sed.ge clk) '/ : ve. — R4 \ = \ i
: R2 <= W2; DFF4| DFF5| |DFF6 ||| \\. [Rz221 R2M1  R2[0]] ¥
———————————————————————————————————————————————— ! ¥ R ~ ____Netlist Y
(a) Circuit Data (b) Circuit Design Graph (c) Ahgned RTL-Nethst Cone Graphs (d) Circuit Reg Graph

* RTL-Netlist daota alignment via backtrace register cone
* Advantages
* RTL-netlist cones are strictly aligned & functionally equivalent
Capture the entire state transition of each register
* Intermediate granularity = better scalability I]Hnuunnnun
CONFERENCE

15



Encoding: Graph Learning Model for Circuits
* RTL graph * Netlist graph

* Graph transformer * Graph neural network
* Global positional encoding * Neighbor aggregation
* Node-level embeddings = Cone graph-level embeddings

Phase 1: Self-Supervised Pre-Training of CircuitEncoder

/;ﬂ_ RTL-Stage Netlist-Stage
- @ Cone Level @ Cone Level g O Design cone graph
[TT1 Node embedding vectors
. Eootbg T e E [[] Node feature
, En;?rcll-mg Lrn Encoding a0t ; [c] Cone embedding vector
Netlist n
‘Gf’a"h P (GNN)
@ Transiormer} Cross-Stage Pre-train_: Multi-sfage
e Alignment contrastive learning
Aug” Lep =Ly +Lyn + Ly
RTL™

ASIA SOUTH PACIFIC
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CircuitEncoder Phase 1: Pre-Training

* Self-supervised pre-training: intrinsic circuit property
€@ /nira-stage contrastive learning within each stage
* Minimizing embed. distance between positive pairs (equiv. transform.)
* Maximizing embed. distance among negative pairs (func. diff.)

Lyr = max(”ER ER+||2 |ER — Er- | + mrr,0),

Lpn = max(”EN EN+||2 IEN — EN-Il2 + mnn, 0),

Phase 1: Self-Supervised Pre-Training of CircuitEncoder

RD RTL-Stage Netlist-Stage
- @ Cone Level @ Cone Level O Design cone graph
ug
[TT] Node embedding vectors
(R L.\  Encoding _ enl, = T [F] Node feature
K%4 RTL Lrn E::::;:g [l Cone embedding vector
N {Graph P (GNN)
% —{ Transformer) o
Cross-Stage Pre-train: Multi-stage
B — Alignment contrastive learning ASIA SOUTH PAcIFIc
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CircuitEncoder Phase 1: Pre-Training

* Self-supervised pre-training: intrinsic circuit property
@) Inter-stage contrastive learning across stages
* Cross-stage alignment between RTL and netlist embed.

Lrp = max(”ER - EN+||2 — [[ER — EN- |3 + myn, 0)

1 max(”EN - ER+||2 — ||[Ex — Er-||2 + mrn, 0).

Ler = aprLyyr + annLnn + aynLen,

Phase 1: Self-Supervised Pre-Training of CircuitEncoder

(E[} RTL-Stage Netlist-Stage
aue — N @ Cone Level © Cone Level O Design cone graph
T [T Node embedding vectors
1 = i T S [l Node feature

Encoding
Netlist
(GNN)

€] Cone embedding vector

Pre-train: Multi-stage

(&1 &l ) L Encoding
%“ RTL
e (Graph
S Transformer)
=3 | Cross-Stage
- : contrastive learning ASIA SOUTH PAGIFIC
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CircuitEncoder Phase 2: Fine-Tuning for Tasks

* Supervised fine-tuning
* Lightweight task models: MLP, tree-based, etc.

Phase 2: Fine-Tune for Applications

Downstream
Tasks
S‘R) Embeddlngs Few-shot Design
MuL ) Circuit Quality
Mux ) Encoder %
Functional
New Clrcult Cone Reasoning

(RTL or Netlist)
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CircuitEncoder Phase 2: Fine-Tuning for Tasks

e Downstream tasks

* Register cone-level:

* [PPA] Timing slack prediction — RTL

* [Func] Register function (control/data) identification — netlist stage
* Design-level:

* [PPA | Overall PPA prediction — RTL

* WNS
* TNS

Phase 2: Fine-Tune for Applications
[rRo | | R1| Downstream
A g ,/! z Tasks
° rea C ADE)%F’")\ Embeddings i -
- -;EL—> Gircuit |:|:|:|:| Few-shot gi;l"gtn
£ Mux Encoder — g y
ASIA SOUTH PAcIFIc
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Experimental Results




Circuit Design Statistics

open-source designs

RTL and netlist cone pairs

» Data augmentation =

graphs in total

Table 2: Benchmark design information.

Source # Design Size {Min, Avg, Max} | Original
Benchmarks || Design | #K Gates # Cones HDL Type
ITC [6] 7 {7, 15, 22} {12, 21, 31} VHDL
OpenCores [1] 5 {2, 40, 59} {12, 96, 173} Verilog
Vex [26] 17 | {8,208,591} | {39, 168, 694} | SpinalHDL
Chipyard [2] 12 | {11,49,194} | {28, 461, 2730}

22
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Experimental Setup

* Industrial-standard VLSI design flow
* RTL designs are synthesized using DC / NanGate 45nm
e Design PPA metrics are obtained from PT

* Circuit augmentation
* Yosys / ABC for functionally equivalent transformation

* Graph model

* RTL: Graphormer (graph transformer)
* Netlist: GraphSage (GNN)

23
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Experimental Setup

* Model training

Table 4: ML model and training hyperparameters.

Training Phase || Pre-Training Fine-Tuning
ML Model Grag‘;g““ G(r;fe’ﬁf’;%e MLP | GCN | XGBoost
# Layers 7 3 2 2
Hidden Dim 256 256 128 128
Activation GELU ReLU ReLU | ReLU 100
Batch Size 128 32 estimator,
Optimizer AdamW Adam 20
LR 0.001 0.001 max depth
Dataset Size 33162 3278
# Epochs 75 1000
Training Time 20h 0.05h

24
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Task Evaluation and Supervised Baseline Methods

* Design quality evaluation — regression metrics

* Register slack prediction at cone level
e RTL-Timer [DAC’24]

* RTL-stage overall quality evaluation at circuit level

* MasterRTL [ICCAD’23]
* SNSv2 [MICRO’23]

* Functional reasoning — classification metrics

* Netlist-stage state register classification at cone level
* RelGNN [ICCAD’21]
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Results: Comparison with SOTA Solutions

* OQutperforming each task-specific SOTA solution
* Cone-level tasks

* Few-shot learning during fine-tuning

* 50% data for CircuitEncoder > 100% data for supervised baselines

Table 3: Accuracy comparison for the cone-level tasks for RTL and netlist designs.

RTL-Stage (Register Slack Prediction)

Netlist-Stage (State Register Identification)

RTL-Timer CircuitEncoder ReIGNN* CircuitEncoder
Method . . . . : 5
(supervised learning) (pre-train + few-shot) (supervised learning) (pre-train + few-shot)

% of train 13% 50% 100% 13% 50% 13% 50% 100% 13% 50%
D;rs‘;sg:ls R MAPE R MAPE R MAPE R MAPE R MAPE || Sens. Acc. | Sens. Acc. | Sens. Acc. | Sens. Acc. | Sens. Acc.
ITC1 0.48 22% 0.77 20% 0.82 18% 0.91 21% 0.96 9% 0% 72% | 50% 72% 50% 72% | 100% 98% | 100% 98%
ITC2 0.43 26% 0.83 12% 0.88 10% 0.92 19% 0.96 9% 0% 92% | 100% 92% | 100% 92% | 100% 100% | 100% 100%
Chipyard1 0.57 30% 0.89 12% 0.92 18% 0.81 15% 0.83 18% 0% 50% 0% 50% 30% 65% 78% 77% 79% 79%
Chipyard2 0.56 31% 0.85 19% 0.88 12% 0.84 12% 0.85 13% 0% 50% 0% 50% 30% 65% 84% 78% 89% 85%
Vex1 0.28 27% 0.65 15% 0.87 24% 0.69 25% 0.88 26% 0% 50% 0% 50% 50% 74% 76% 79% 82% 72%
Vex2 0.73 29% 0.93 17% 0.86 16% 0.85 13% 0.87 13% 15% 57% | 21% 57% 32%  60% 73% 76% 79% 78%
Vex3 0.27 36% 0.56 40% 0.84 16% 0.81 14% 0.89 12% 16% 48% 0% 48% 50% 72% 81% 82% 85% 84%
26 Vex4 0.12 40% 0.76 18% 0.87 12% 0.83 16% 0.86 14% 30% 63% 33% 63% 33% 63% 88% 79% 90% 81%
Avg. 0.43 30% 0.78 19% 0.87 16% 0.83 17% 0.89 14% 8% 60% | 26% 60% | 47% 70% | 85% 84% 88% 85%
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Results: Comparison with SOTA Solutions

* OQutperforming each task-specific SOTA solution
* Circuit-level tasks

30% 26% 28%

- 25 423% 25%
19%
<
2 10%
N/A N/A
0%
WNS TNS Area

MasterRTL [10] SNS v2 [35] RTL-Timer [9] CircuitEncoder sssoummacic

i
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Results: Comparison with SOTA Solutions

* Fine-tuning data size scaling

e 100% =2 50% =2 25% =2 12%
* Pre-trained CircuitEncoder remains stable

°® °® 100% 5 5 9
SOTA Methods CircuitEncoder g 84./{) SS.A 85.6
40% § ®
30% o ® 9 70%
. °_ . <1 50% 59% 60%
% U
120% L - 16% = ®
S — b4 ® © 34%
17% 159 14% D
0%
7 0% 25% 50% 75% 100% 0% 2% 20 % 1o
0 0 (1] (1] (1]
(a) RTL-Stage Timing Slack Prediction (b) Netlist-Stage Functional Identification
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Ablation Study
* Impact of cross-stage alignment

e Impact of graph transformer

CircuitEncoder %/, Remove Cross-Stage Alignment

Remove Graph Transformer

=

= 089 om 30%
. 0.71
S 7 = w  20%
05 % = 3 14%
L / = = "10%
5 ? =
Q =
0 7z = 0%
(a) RTL-Stage (Timing Slack Prediction)
0, c.>; 0,
90% 38% © 90%
Z 3 85%
= g 85%
G | 85% 8% g3 °
3 % = 8 ' 80%
) 7 = c
% = i
80% z = s 75%
29 (b) Netlist-Stage (Functional Identification)

]
w
=X

8

o
=X

2]
I g

AN\
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Conclusion & Future Work




Conclusion

* CircuitEncoder

* Self-supervised & pre-trained
* Graph function contrastive learning

* Cross-stage alignment
e RTL function — netlist physics

* Support various tasks
* Design quality: slack, WNS, TNS, area prediction
* Functional reasoning: state register identification

31
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Future Work

* Advancing circuit foundation model
* Contrastive learning = Circuit-specific self-supervised learning

e Graph modality 2 Multimodality for each design stage
* RTL: AST/control-data flow graph, Verilog code, specification text
* Netlist: connectivity graph, annotated node text
* Layout: image, netlist graph
* Existing encoders and decoders work separately
* Encoder (graph) — predictive task
* Decoder (text, LLM) — generative task
* Unified encoder-decoder?
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Questions?
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